![]() 默然 等级:少專br /> 累计积分?40 可用积分?40 |
楼主 发表于:2016-07-27 11:04:01
回复1楻/div>
硅芯片制造工艺正逼近物理极限,为满足摩尔定律增长要求,要么寻找全新材料替代硅——石墨烯、二硫化钼或者单原子层锗,要么创新方法来拓展硅芯片的能力——将更符合要求的新材料高效集成在硅衬底上、/span> 一些新型功能材料,如具有铁电和铁磁性质的多铁性材料、表面有导电性能的拓扑绝缘体及新型铁电材料等,在传感器、非易失性存储器及微机电领域有很好的应用前景。但这些材料目前面临的一个难题是,至今它们都不能被集成到硅芯片上、/span> 相较而言,完全替代原有技术路线,不仅需要大量资金投入,产业充分竞争和协作也必不可少;在成熟技术上深部挖潜,成本虽然低很多,却难以带来翻天覆地的全新业态。好在科技进步不同于政治更迭,革命派和改良派都在为科技的发展做出巨大的贡献、/span> 美国北卡罗来纳州立大?/span>21日发布新闻公报称,该校研究人员与美国陆军研究办公室合作开发出一种新方法,可将多铁性材料等新型功能材料集成至计算机芯片上、/span>此次,美国研究人员开发出一种被称为“薄膜外延法”的新方法。他们设计了两种可与硅兼容的板层——氮化钛板层和钇稳定氧化锆板层,作为连接新功能材料与不同电子产品硅芯片的底层基质(平台),然后利用其开发的一套缓冲薄膜,将功能材料与硅芯片集成在一起。这些薄膜一面与新型功能材料的晶体结构结合,另一面与底层基质结合,从而起到有效的连接作用。研究人员称,集成的功能材料不同,所使用的薄膜组合也不同。比如,集成多铁性材料会使用氮化钛、氧化镁、氧化锶和镧锶锰氧化物这4种类型的薄膜组合;而集成拓扑绝缘体则仅会使用氧化镁和氮化钛两种薄膜、/span> 这一新技术将有助于未来制造出更轻巧、智能的电子设备和系统、/span>研究人员已为此项集成技术申请了专利。相关研究成果刊发在《应用物理评论》期刊上、/p> |