物理吸附呈现的数据结果,是我们在软件看到的吸脱附等温线。在文献或资料中,我们经常会看到不同的曲线类型。本文主要对不同的曲线类型进行梳理,并介绍如何针对自己做的数据曲线进行分类描述、/span>
曲线类型
1985年,IUPAC建议物理吸附等温线分为六种类型。经?0年的发展,各种新的特征类型等温线已经出现,并证明了与其密切相关的特定孔结构?015年,IUPAC更新了原有的分类,主要对I类、IV类吸附等温线增加了亚分类。两版曲线物理吸附等温线分类如下9/span>
1985版曲线类垊/span>
2015版曲线类垊/span>
I类等温线
I 型等温线在较低的相对压力下吸附量迅速上升,达到一定相对压力后吸附出现饱和值,类似 Langmuir 型吸附等温线、span style="background-color: rgb(255, 255, 255); margin: 0px; padding: 0px; outline: currentcolor none 0px; max-width: 100%; font-family: Optima-Regular, PingFangTC-light; letter-spacing: 1px; text-indent: 24px;">在P/P0非常低时吸附量急剧上升,这是因为在狭窄的微?分子尺寸的微?中,吸附?吸附质的相互作用增强,从而导致在极低相对压力下的微孔填充。但当达到饱和压力时(P/P0>0.99),可能会出现吸附质凝聚,导致曲线上扬、/span>
微孔材料表现为I类吸附等温线。对于在77K的氮气和87K的氩气吸附而言,I(a):是只具有狭窄微孔材料的吸附等温线,一般孔宽小?nm。I(b):微孔的孔径分布范围比较宽,可能还具有较窄介孔。这类材料的一般孔宽小?.5nm。具有相对较小外表面的微孔固?例如,某些活性炭,沸石分子筛和某些多孔氧化物)具有可逆的I型等温线、/span>
II 类等温线
无孔或大孔材料产生的气体吸附等温线呈现可逆的II 类等温线。其线形反映了不受限制的单层-多层吸附。如果膝形部分的曲线是尖锐的,应该能看到拐点B,它是中间几乎线性部分的起点—该点通常对应于单层吸附完成并结束;如果这部分曲线是更渐进的弯?即缺少鲜明的拐点B),表明单分子层的覆盖量和多层吸附的起始量叠加。这 BET 公式最常说明的对象。由于吸附质于表面存在较强的相互作用,在较低的相对压力下吸附量迅速上升,曲线上凸。等温线拐点通常出现于单层吸附附近,随相对压力的继续增加,多层吸附逐步形成,达到饱和蒸汽压时,吸附层无穷多,吸附还没有达到饱和,多层吸附的厚度似乎可以无限制地增加、br/>
III 类等温线
III型等温线也属于无孔或大孔固体材料。等温线下凹,不存在B点,因此没有可识别的单分子层形成;吸附材?吸附气体之间的相互作用相对薄弱,吸附分子在表面上在最有引力的部位周边聚集。第一层的吸附热比吸附质的液化热小,以致吸附初期吸附质较难于吸附,而随吸附过程的进行,吸附出现自加速现象,吸附层数也不受限制。BET 公式 C 值小? 时,可以描述 III 型等温线对比II型等温线,在饱和压力?即,在P/P0=1?的吸附量有限、/span>
未完待续…?/span>
(后面几类曲线及曲线选型技巧请见下篇文章)
15276


- 为什么近期LDH的电催化应用频登顶刊>/a>
- 纳米材料与类器官:从相互作用到个性化医疗的突砳/a>
- AFM、AHM等顶刊报道黑磷的最新研究进屔/a>
- 为什么中药碳点的研究进展值得关注>/a>
- 高纯拟薄水铝石:开启材料科学新纪元的璀璨明珟/a>
- 我司首席科学家程金生博士获得荷兰国际学术机构颁发的评审专家证?/a>
- 为什么近期MOF材料的研究进展值得关注>/a>
- 致密化压力对石榴石固态锂电池成型和性能的影哌/a>
- 苏州碳丰科技首席科学家程金生老师以本公司名义在国际上发表关于石墨烯纤维的论文《石墨烯纤维纳米复合材料的合成及氨基酸检测的分析应用》:
- 介可视·散装物料库存管理雷达全景扫描系统在料仓、堆场中的应?/a>
- 磷酸化修饰鬼臼果多糖的制备及生物活?/a>
- DSR论文解读:Advanced Science News 报道中科院长春应化所新型非铂催化材料研究成果
- High-throughput preparation, scale up and solidification of andrographolide nanosuspension using hummer acoustic resonance technology(纳米混悬剂制备的前瞻性技 - 蜂鸟声共振)
- 扫描电镜优秀论文赏析|飞纳台式扫描电镜电极材料上的应?/a>
- 扫描电镜论文赏析-干旱影响杨树叶片及次生木质部发育的分子机刵/a>
- 压实度与密实度的区别
