北京易科泰生态技术有限公号/div>
首页 > 产品中心 > 水质分析 > MC1000 8通道藻类培养与在线监测系绞/div>
产品详情
MC1000 8通道藻类培养与在线监测系绞/div>
MC1000 8通道藻类培养与在线监测系统的图片
参考报价:
面议
品牌9/dt>
关注度:
485
样本9/dt>
暂无
型号9/dt>
产地9/dt>
捷克
信息完整度:
典型用户9/dt>
暂无
认证信息
高级会员 2平/div> 称: 北京易科泰生态技术有限公号/b>
证:工商信息已核宝br /> 访问量:249233
手机网站
扫一扫,手机访问更轻杽/div>
产品分类

AquaPen-C手持式叶绿素荧光测量仪(试管式)EasyChem 200全自动离子分析仪uMAC SMART便携式水质分析仪FL3500水下原位叶绿素荧光仪水体富营养化在线监测预报系统SEBA地下水取样器SEBA MPS-Checker便携式水质测量仪HOBO一氧化碳分析仪AZMGI便携式多种气体检测仪二氧化碳、温度检测仪7000 seriesSpectroSense2冠层光谱测量系统

VS3100系统Cardy Twin电导率计2265FS便携式盐分计2225FS便携式盐分计XRF Scanner样芯元素扫描分析系统智能LED光源人工气候箱Univac便携式昆虫抽吸采样器

Thermoline L+M植物生长室TPGThermoline L+M温湿度控制箱TRH

CoreScanner芯体密度X-光扫描成像与元素分析系统FireFly LIBS元素分析系统DragonFly LIBS元素分析系统

酶检测试剂工具包

MULTIPLEX RESEARCH便携式紫?可见光荧光仪浮游植物荧光测量系统

WinSCANOPY植物冠层分析系统

SEDIMAT 4-12土壤粒径分析系统

公司品牌
品牌传达企业理念
友情链接
产品简今/div>

MC1000 8通道藻类培养与在线监测系统由8?span>100ml藻类培养试管、水浴控温系统?span>LEDs光源控制系统及光密度和溶解氧(选配)在线监测系统等组成,可用于藻类培养与控制实验、梯度对比实验等,适于水体生态毒理学研究检测、藻类生理生态研究、水生态研究等,其主要功能特点如下9/span>

1.8通道藻类培养,每个藻类培养试管可培养85ml藻液

2.LEDs光源,可对每个培养试管独立调节控制和设置光强度和时间,如昼夜变化筈/span>

3.光密度在线监测,包括OD680?/span>OD720,监测数据自动存?/span>

4.溶解氧在线监测(备选)以测量分析藻类光合作用等

5.温度、光照控制可用户设置不同的程序模弎/span>

6.气泡混匀:可通过调节阀手动调节气流量以对培养试管内的藻类进行混匀

7.可选配O2/CO2监测系统,在线监测藻类光合放氧和CO2吸收

8.可选配藻类荧光测量模块

应用领域9/span>

l多通道同步藻类培养

l同步梯度胁迫实验

l培养条件优化

l控制培养条件与藻类生长动力学监测

仪器型号9/span>

MC 1000-OD9/span> 8个通道光源颜色相同+/span>标配冷白先/span>LED

MC 1000-OD-WW9/span>8个通道光源颜色相同+/span>标配暖白先/span>LED

MC 1000-OD-MULTI9/span> 8个通道光源颜色不同,分别为1)紫先/span>405nm+/span>2)蓝紫光450nm+/span>3)蓝先/span>470nm或冷白光+/span>4)暖白光+/span>5)绿先/span>540nm+/span>6)黄橙光590nm+/span>7)红先/span>640nm+/span>8)远红光730nm、/span>

MC 1000-OD-MIX:每个通道可配?夙/span>8种不同颜色的LED光源,光源颜色可由用户定制,可选颜色为1)紫先/span>405nm+/span>2)蓝紫光450nm+/span>3)蓝先/span>470nm或冷白光+/span>4)暖白光+/span>5)绿先/span>540nm+/span>6)黄橙光590nm+/span>7)红先/span>640nm+/span>8)远红光730nm、/span>

技术指标:

1.藻类同步培养通道9/span>8?/span>

2.培养管容量:100ml,建?*培养容量85ml

3.在线即时监测参数:分别监测每个培养管皃/span>OD680咋/span>OD720,数据自动保存到主机内存中,PIN光电二极管检测器+/span>665,/span>750nm带通滤波器

4.精确控温范围:标准配置高于环境温?/span>5-10℃(与光强有关)~60℃,可选配15ℂ/span>-60℃(环境温度20℃,需加配制冷单元(/span>

5.加热系统9/span>150W筒形加热?/span>

6.水浴体积9/span>5L

7.水浴自动补水模块(选配):水浴水位因蒸发降低后可自动补氳/span>

8.光源系统:全LED光源,可?/span>0-100%范围内调控,每个通道的光强可分别独立调控

1MC 1000-OD9/span>标配冷白先/span>LED,可选配暖白光、红光(635nm)或蓝光'/span>470nm(/span>LED;光弹/span>0-1000mol/m2/s可调+/span>可升级至0-2500mol/m2/s

2MC 1000-OD-WW9/span>标配暖白先/span>LED,光弹/span>0-1000mol/m2/s可调,更高光强可定制

3MC 1000-OD-MULTI9/span>8个通道光源颜色不同,分别为紫光405nm,蓝紫光450nm,蓝先/span>470nm或冷白光,暖白光,绿先/span>540nm,黄橙光590nm,红先/span>640nm,远红光730nm:/span>光强0-1000mol/m2/s可调

4MC 1000-OD-MIX:每个通道可配?夙/span>8种不同颜色的LED光源,光源颜色可由用户定制,**光强可达2500mol/m2/s

9.控光模式:可静态或动态设置光照程序,如正弦、昼夜节律、脉冲等

10.控制单元显示屏:可调控培养程序和显示数据

11.气流调控:通过多管调节阀寸/span>8个培养管手动独立调控气体流量

12.OD测量程序:将主机内存中的OD数据下载到电脑中并以图表形式显示,数据可导出丹/span>TXT戕/span>Excel文件

13.MC实时在线监测分析模块(含专用工作站和软件基础版或高级版,选配(/span>

1同时控制2?/span>MC1000(基础版)或无限台MC1000(高级版(/span>

2通过PBR软件动态调控光照和温度模式

3通过光密度(OD680?/span>OD720)变化实时监测藻类生物量

4对生长速率进行实时回归分析

5多数据管理功能(过滤、查找、多重导出)

6可将测量数据、培养程序和其他信息保存到数据库?/span>

7通过GUI图形用户界面设置培养程序并在线显示测量数据图

8数据可导出为CSV?/span>Excel戕/span>XML文件

9支持GMS高精度气体混合系统(仅限高级版)

10用户自编程培养程序(仅限高级版)

11设定实验起始时间(仅限高级版(/span>

12电子邮件通知(仅限高级版(/span>

14.GMS150高精度气体混合系统(选配):可控制气体流速和成分,标配为控制氮气/空气和二氧化碳,气源需用户自备

15.恒浊控制模块(选配):带有8个控制阀,可独立控制8个培养管的浊度,由软件自动控

16.O2/CO2监测系统(选配):8通道续批式监测藻籺/span>CO2吸收或光合放氧通量9/span>

1氧气分析测量:氧气测量范図/span>0,/span>100%,分辨玆/span>0.0001%,精确度优于0.1%,温度、压力补偾/span>+/span>数码过滤(噪音)0-50秒可调,具两行文字数孖/span>LCD背光显示屏,可同时显示氧气含量和气压

2二氧化碳分析测量:双波长非色散红外技术,测量范围0,/span>5%或0,/span>15%两级选择(双程),分辨率优于0.0001%戕/span>1ppm(可辽/span>0.1ppm),精确?/span>1%,通过软件温度补偿,具两行文字数字LCD背光显示屏,可同时显礹/span>CO2含量和气压,具数码过滤(噪音)功胼/span>

3气体抽样与气路切换:具备隔膜泵、气流控制针阀和精密流量计,气路自动定时切换功胼/span>

17.藻类荧光测量模块(选配):用于测量藻类荧光参数以反映藻类生理状态及浓度,荧光测量程序包?/span>Ft+/span>QY+/span>OJIP-test+/span>NPQ、光响应曲线等,可选配探头式测量或试管式测量:

1探头式测量:具备光纤测量探头,可插入培养液中原位测量藻类荧光参数

2试管式测量:具备测量杯,可取样精确测量藻类荧光参数及光密度倻/span>

18.通讯方式9/span>USB

19.尺寸9/span>713321 cm

20.重量9/span>13kg

21.供电9/span>110-240V

应用案例9/span>

不同CO2浓度下衣藺/span>Chlamydomonas的生长曲线(Zhang+/span>2014(/span>

聚球藺/span>Synechococcus野生型和▲/span>nblA的生长曲线(Yu+/span>2015(/span>

产地9/span>捷克

参考文献:

1.YuJet al.2015.Synechococcus elongatusUTEX 2973 a fast growing cyanobacterial chassis for biosynthesis using light and CO2.Scientific Reports 5:8132+/span>DOI: 10.1038/srep08132

2.GramaB Set al.2015.Balancing photosynthesis and respiration increases microalgal biomass productivity during photoheterotrophy on glycerol.ACS Sustainable Chem. Eng.DOI: 10.1021/acssuschemeng.5b01544

3.DavisR Wet al.2015.Growth of mono- and mixed cultures ofNannochloropsis salinaandPhaeodactylum tricornutumon struvite as a nutrient source.Bioresource Technology198 577-585

4.PatzeltD Jet al.2015.Hydrothermal gasification ofAcutodesmus obliquusfor renewable energy production and nutrient recycling of microalgal mass cultures.Journal of Applied Phycology 27(6)+/span>2239-2250

5.PatzeltD Jet al.2015.Microalgal growth and fatty acid productivity on recovered nutrients from hydrothermal gasification ofAcutodesmus obliquus.Algal Research10 164-171

6.FlowersJ Met al.2015.Whole-Genome Resequencing Reveals Extensive Natural Variation in the Model Green AlgaChlamydomonas reinhardti.The Plant Cell27(9)2353-2369

7.MakowerA Ket al.2015.Transcriptomics-aided dissection of the intracellular and extracellular roles of microcystin inMicrocystis aeruginosaPCC 7806.Appl. Environ. Microbiol. 81(2)+/span>544-554

8.VuM T Tet al.2015.Optimization of photosynthesis growth and biochemical composition of the microalgaRhodomonas salina–span>an established diet for live feed copepods in aquaculture.Journal of Applied Phycologydoi:10.1007/s10811-015-0722-2

9.Nikolaou Aet al.2015.A model of chlorophyll fluorescence in microalgae integrating photoproduction photoinhibition and photoregulation. Journal of Biotechnology 19491-99. DOI: 10.1016/j.jbiotec.2014.12.00

10.Gris Bet al.2015.Optimizing biomass and high value compound production inCyanobacterium aponinumPCC 10605.Societa Botanica Italiana. Venezia.

11.GrinSet al.2014.Modeling the dependence of respiration andphotosynthesis upon light acetate carbon dioxide+/span>nitrate and ammonium inChlamydomonasreinhardtiiusing design of experiments andmultiple regression.BMC Systems Biology 896

12.HasanRet al.2014.Bioremediation of Swine Wastewater and Biofuel Potential by usingChlorella vulgarisChlamydomonas reinhardtii andChlamydomonas debaryana.J Pet Environ Biotechnol 5:175. doi: 10.4172/2157-7463.1000175

13.?antr??ekJet al.2014.Stomatal and pavement cell density linked to leaf internal CO2concentration.Annals of Botany 114+/span>191-202

14.Zhang Bet al.2014.Characterization of a Native Algae SpeciesChlamydomonas debaryana: Strain Selection Bioremediation Ability and Lipid Characterization.BioResources9(4) 6130-6140

15.GramaB Set al.2014.Induction of canthaxanthin production in aDactylococcusmicroalgaisolated from the Algerian Sahara.Bioresource Technology151297-305

16.GramaB Set al.2014.Characterization of fatty acid and carotenoid production in anAcutodesmusmicroalga isolated from the Algerian Sahara.Biomass and Bioenergy69 265-275

17.Miazek Ket al.2014.Growth of Chlorella in the presence of organic carbon: A photobioreactor study. ConferenceProcess of Technics 2014Prague

  • 推荐产品
  • 供应产品
  • 产品分类