证:工商信息已核宝br /> 访问量:217672
GMS150高精度气体调控系统可以将*夙/span>4种不同气体进行精确混合。每路输入气体的流量使用热式质量流量计精确测量,并由内置的质量流量控制器进行精准控制,输出的是完全混合的均质气体。气体输入输出使?/span>Prestolok快速安全接头,保证使用过程中的便捷性与安全性、/span>
GMS150高精度气体调控系统可用于二氧化碳、氮气、一氧化碳、甲烷、氨气以及其他气体的浓度控制、/span>
GMS150高精度气体调控系统分丹/span>GMS150版和GMS150-MICRO版,其中GMS150版精度更高,GMS150-MICRO版可调控流速更大、/span>
应用领域
与植物培养箱、光养生物反应器等联用,
进行精确气体控制培养
模拟不同CO2浓度环境,研究温室效库/span>
对植?/span>/藻类的影哌/span>
研究CO2浓度与光合作用的关系
模拟烟气等有害气体对植物/藻类的影哌/span>
研究植物/藻类对有害气体的处理与利?/span>
技术参数:
测量原理:热式质量流量测量法
可调控气体:空气、氮气、二氧化碳、氧气、一氧化碳、甲烷、氨气等干燥纯净、无腐蚀性、无爆炸性气体,气源需用户自备
调控通道:标配为2通道,通道1丹/span>Air-N2,通道2丹/span>CO2?多可扩展丹/span>4通道
工作温度9/span>15-50ℂ/span>
输入/输出接头9/span>Parker Prestolok接头(6mm)
输入压力9/span>3-5bar
密封:氟化橡胵/span>
显示屏:821字符液晶显示屎/span>
尺寸9/span>37cm2815cm
供电9/span>115-230V交流甴/span>
可联用仪器:FMT150藻类培养与在线监测系统?/span>MC1000 8通道藻类培养与在线监测系统?/span>FytoScope系列智能LED光源生长箱、用户自行设计的培养箱或反应器(可提供气路连接方案)筈/span>
与中科院海洋所自行设计的培养装置联用的GMS150
GMS150版调控参数:
*小流量范围:0.02 - 1 ml/min
**流量范围9/span>20 - 1000 ml/min
可定制流量范围:可在**流量?小流量之间定制。标准配置通道1(Air-N2): 20-1000 ml/min;通道2(CO2): 0.4-20 ml/min;可调控CO2浓度0.04% - 100%(实际调控浓度与流量有关(/span>
精度?#177;0.5%,加全量?#177;0.1%'/span>3-5ml/min为全量程1%,<3ml/min为全量程2%(/span>
稳定性:<全量?#177;0.1%(参耂/span>1ml/min N2(/span>
稳定时间9/span>1~2s
预热时间9/span>30min预热达到**精度+/span>2min预热偏差2%
温度灵敏度:<0.05%/ℂ/span>
压力灵敏度:0.1%/bar(参耂/span>N2(/span>
姿态灵敏度9/span>1bar压力下与水平面保?/span>90**误差0.2%(参耂/span>N2(/span>
重量9/span>7kg
GMS150-MICRO版调控参数:
*小流量范围:0.2 - 10 ml/min
**流量范围9/span>100 - 5000 ml/min
可定制流量范围:可在**流量?小流量之间定制。标准配置通道1(Air-N2): 40-2000 ml/min;通道2(CO2): 0.8-40 ml/min;可调控CO2浓度0.04% - 100%(实际调控浓度与流量有关(/span>
精度?#177;1.5%,加全量?#177;0.5%
重复性:流量<20 mlmin为全量程0.5%,流野/span>>20 ml/min为实际流?#177;0.5%
稳定时间9/span>1s
预热时间9/span>30min预热达到**精度+/span>2min预热偏差2%
温度灵敏度:零点<0.01%/℃,满度<0.02%/ℂ/span>
姿态灵敏度9/span>1bar压力下与水平面保?/span>90**误差0.5 ml/min(参耂/span>N2(/span>
重量9/span>5kg
应用案例9/span>
不/span>FMT150藻类培养与在线监测系统联用研究蓝藺/span>Cyanothecesp. ATCC 51142的超日代谢节律(Cerveny 2013 PNAS(/span>
产地9/span>欧洲
参考文献:
1.Sarayloo Eet al. 2018. Enhancement of the lipid productivity and fatty acid methyl ester profile ofChlorella vulgarisby two rounds of mutagenesis. Bioresource Technology 250: 764-769
2.Mitchell M Cet al. 2017. Pyrenoid loss impairs carbon-concentrating mechanism induction and alters primary metabolism inChlamydomonas reinhardtii. Journal of Experimental Botany 68(14): 3891-3902
3.Hulatt C Jet al. 2017. Polar snow algae as a valuable source of lipids? Bioresource Technology 235: 338-347
4.Jouhet Jet al. 2017. LC-MS/MS versus TLC plus GC methods: Consistency of glycerolipid and fatty acid profiles in microalgae and higher plant cells and effect of a nitrogen starvation. PLoS ONE 12(8): e0182423
5.Angermayr S Aet al. 2016. CulturingSynechocystissp. Strain PCC 6803 with N2and CO2in a Diel Regime Reveals Multiphase Glycogen Dynamics with Low Maintenance Costs. Appl. Environ. Microbiol. 82(14):4180-4189
6.Acu?a A Met al. 2016. A method to decompose spectral changes inSynechocystisPCC 6803 during light-induced state transitions. Photosynthesis Research 130(1-3): 237-249