证:工商信息已核宝br /> 访问量:273302
FluorPenFP110手持式叶绿素荧光仪用于实验室、温室和野外快速测量植物叶绿素荧光参数,具有便携性强、精确度高、性价比高等特点;双键操作,具图形显示屏,内置锂电和数据存储,广泛应用于研究植物的光合作用、胁迫监测、除草剂检测或突变体筛选,还可用于生态毒理的生物检测,如通过不同植物对土壤或水质污染的叶绿素荧光响应,找出敏感植物作为生物传感器用于生物检测、/span>FP110配备多种叶夹型号,用于不同的样品与研究、/span>
应用领域
适用于光合作用研究和教学,植物及分子生物学研究,农业、林业,生物技术领域等。研究内容涉及光合活性、胁迫响应、农药药效测试、突变筛选等、/span>
植物光合特性研穵/span>
光合突变体筛选与表型研究
生物和非生物胁迫的检浊/span>
植物抗胁迫能力或者易感性研穵/span>
农业和林业育种、病害检测、长势与产量评估
除草剂检浊/span>
教学
功能特点9/span>
结构紧凑、便携性强+/span>LED光源、检测器、控制单元集成于仅手机大小的仪器内,重量仄/span>188g
功能强大,是叶绿素荧光技术的高端结晶产品,具备了大型荧光仪的所有功能,可以测量所有叶绿素荧光参数
内置了所有通用叶绿素荧光分析实验程序,包括3套荧光淬灭分析程序?/span>3套光响应曲线程序?/span>OJIP快速荧光动力学曲线筈/span>
高时间分辨率,可辽/span>10万次每秒,自动绘凹/span>OJIP曲线并给凹/span>26?/span>OJIP–test参数
FluorPen专业软件功能强大,可下载、展示叶绿素荧光参数图表,也可以通过软件直接控制仪器进行测量
具备无人值守自动监测功能
内置蓝牙不/span>USB双通讯模块+/span>GPS模块,输出带时间戳和地理位置的叶绿素荧光参数图表
配备多种叶夹型号:固定叶夹式(适于实验室内暗适应或夜间快速测量)、分离叶夹式(适用于野外暗适应测量)、探头式(透明光纤探头,具备叶片固定装置,用于非接触性测量监测或光适应条件下的叶绿素荧光监测)、用户定制式筈/span>
可选配野外自动监测式荧光仪,防水防尘设讠/span>
测量程序与功胼/span>
Ft:瞬时叶绿素荧光+span>暗适应完成名/span>Ft</span>F0
QY:量子产额,表示光系绞/span>II的效率,等于Fv/Fm(暗适应状?/span>)戕/span>PSII(光适应状?/span>)、/span>
OJIP:快速荧光动力学曲线,用于研究植物暗适应后的快速荧光动态变匕/span>
NPQ:荧光淬灭动力学曲线,用于研究植物从暗适应到光适应状态的荧光淬灭变化过程、/span>
LC:光响应曲线,用于研究植物对不同光强的荧光淬灭反应、/span>
PAR:光合有效辐射,测量环境中植物生长可以利用的400-700nm实际光强(限PAR型号)、/span>
技术参?/span>
测量参数包括F0?/span>Ft?/span>Fm?/span>Fm‘/span>?/span>QY?/span>QY_Ln?/span>QY_Dn?/span>NPQ?/span>Qp?/span>Rfd?/span>PAR(限PAR型号(/span>?/span>Area?/span>Mo?/span>Sm?/span>PI?/span>ABS/RC筈/span>50多个叶绿素荧光参数,叉/span>3种给光程序的光响应曲线?/span>3种荧光淬灭曲线?/span>OJIP曲线筈/span>
OJIP–test时间分辨率为10s(每科/span>10万次),给出OJIP曲线咋/span>26个参数,包括F0?/span>Fj?/span>Fi?/span>Fm?/span>Fv?/span>Vj?/span>Vi?/span>Fm/F0?/span>Fv/F0?/span>Fv/Fm?/span>Mo?/span>Area?/span>Fix Area?/span>Sm?/span>Ss?/span>N?/span>Phi_Po?/span>Psi_o?/span>Phi_Eo?/span>Phi–Do?/span>Phi_Pav?/span>PI_Abs?/span>ABS/RC?/span>TRo/RC?/span>ETo/RC?/span>DIo/RC筈/span>
测量程序9/span>Ft?/span>QY?/span>OJIP?/span>NPQ1?/span>NPQ2?/span>NPQ3?/span>LC1?/span>LC2?/span>LC3?/span>PAR(限PAR型号)?/span>Multi无人值守自动监测
叶夹类型9/span>FP110/S固定叶夹式?/span>FP110/D分离叶夹式?/span>FP110/P探头式?/span>FP110/X用户定制弎/span>
PAR传感?/span>(限PAR型号(/span>9/span>80o入射角余弦校正,读数单位mol(photons)/m2.s,可显示读数,检测范図/span>400-700 nm
测量光:每测量脉?*0.09mol(photons)/m2.s+/span>10-100%可调
光化学光9/span>10-1000mol(photons)/m2.s可调
饱和光:**3000mol(photons)/m2.s+/span>10-100%可调
光源:标准配置蓝先/span>470nm,可根据需求配备不同波长的LED光源
检测器9/span>PIN光电二极管,667?50nm滤波?/span>
尺寸大小:超便携,手机大小,1346533mm,重量仅188g
存贮:容野/span>16Mb,可存储149000数据炸/span>
显示与操作:图形化显示,双键操作,待朹/span>8分钟自动关闭
供电:可充电锂电池,USB充电,连续工佛/span>48小时,低电报?/span>
工作条件9/span>0‒/span>55℃,0‒/span>95%相对湿度(无凝结水)
存贮条件9/span>-10‒/span>60℃,0‒/span>95%相对湿度(无凝结水(/span>
通讯方式:蓝牘/span>+USB双通讯模式
GPS模块:内?/span>
软件9/span>FluorPen1.1专用软件,用于数据下载、分析和图表显示,输凹/span>Excel数据文件及荧光动力学曲线图,适用亍/span>Windows 7及更高操作系绞/span>
操作软件与实验结枛/span>
产地:捷兊/span>
应用案例9/span>
2017平/span>4月,美国国家航空航天局'/span>NASA)新一代先进植物培养器'/span>Advanced Plant Habitat+/span>APH)搭载联盟号MS-04货运飞船抵达国际空间站。宇航员使用FluorPen手持仪叶绿素荧光仪在其中开展植物生理学及太空食物种植(growth of fresh food in space)的研究、/span>
参考文?/span>
1.F Danget al.2019.Discerning the Sources of Silver Nanoparticle in a Terrestrial Food Chain by Stable Isotope Tracer Technique.Environmental Science & Technology 53(7):3802-3810
2.N Moghimiet al.2019.New candidate loci and marker genes on chromosome 7 for improved chilling tolerance in sorghum.Journal of Experimental Botany70(12):3357?371
3.M Rafiqueet al.2019.Potential impact of biochar types and microbial inoculants on growth of onion plant in differently textured and phosphorus limited soils.Journal of Environmental Management247:672-680
4.P Soudeket al.2019.Thorium as an environment stressor for growth ofNicotiana glutinosaplants.Environmental and Experimental Botany164:84-100
5.JA Prez-Romeroet al.2019.Investigating the physiological mechanisms underlying Salicornia ramosissimaresponse to atmospheric CO2enrichment under coexistence of prolonged soil flooding and saline excess.Plant Physiology and Biochemistry135:149-159
6.D Shaoet al.2019.Physiological and biochemical responses of the salt-marsh plantSpartina alterniflorato long-term wave exposure.Annals of Botany DOI:10.1093/aob/mcz067
7.C Cirilloet al.2019.Biochemical Physiological and Anatomical Mechanisms of Adaptation ofCallistemon citrinusandViburnum lucidumto NaCl and CaCl2Salinization.Front. Plant Sci. 10:742
8.T Savchenkoet al.2019.Waterlogging tolerance rendered by oxylipin-mediated metabolic reprogramming inArabidopsis.Journal of Experimental Botany70(10):2919?932
9.M Liuet al.2019.Strong turbulence benefits toxic and colonial cyanobacteria in water: A potential way of climate change impact on the expansion of Harmful Algal Blooms.Science of The Total Environment670:613-622
10.PK Tiwariet al.2019.Liquid assisted pulsed laser ablation synthesized copper oxide nanoparticles (CuO-NPs) and their differential impact on rice seedlings.Ecotoxicology and Environmental Safety176:321-329
11.JA Prez-Romeroet al.2018.Atmospheric CO2enrichment effect on the Cu-tolerance of the C4cordgrassSpartina densiflora.Journal of Plant Physiology220:155-166
12.SK Yadavet al.2018.Physiological and Biochemical Basis of Extended and Sudden Heat Stress Tolerance in Maize.Proceedings of the National Academy of Sciences 88(1):249-263
13.D Balfagnet al.2018.Involvement of ascorbate peroxidase and heat shock proteins on citrus tolerance to combined conditions of drought and high temperatures.Plant Physiology and Biochemistry127:194-199
14.JI Vlchezet al.2018.Protection of Pepper Plants from Drought byMicrobacteriumsp. 3J1 by Modulation of the Plant's Glutamine and -ketoglutarate Content: A Comparative Metabolomics Approach.Front. Microbiol. 9:284
15.MC Sorrentinoet al.2018.Performance of three cardoon cultivars in an industrial heavy metal-contaminated soil: Effects on morphology cytology and photosynthesis.Journal of Hazardous Materials351:131-137
16.E Niewiadomskaet al.2018.Lack of tocopherols influences the PSII antenna and the functioning of photosystems under low light.Journal of Plant Physiology223:57-64
17.S Singhet al.2018.Cadmium toxicity and its amelioration by kinetin in tomato seedlings vis--vis ascorbate-glutathione cycle.Journal of Photochemistry and Photobiology B: Biology178:76-84
18.EL Fryet al.2018.Drought neutralises plant–soil feedback of two mesic grassland forbs.Oecologia186(4):1113‒/span>-125
附:OJIP参数及计算公弎/span>
Bckg = background
Fo: = F50s; fluorescence intensity at 50 s
Fj: = fluorescence intensity at j-step (at 2 ms)
Fi: = fluorescence intensity at i-step (at 60 ms)
Fm: = maximal fluorescence intensity
Fv: = Fm - Fo (maximal variable fluorescence)
Vj = (Fj - Fo) / (Fm - Fo)
Fm / Fo = Fm / Fo
Fv / Fo = Fv / Fo
Fv / Fm = Fv / Fm
Mo = TRo / RC - ETo / RC
Area = area between fluorescence curve and Fm
Sm = area / Fm - Fo (multiple turn-over)
Ss = the smallest Sm turn-over (single turn-over)
N = Sm . Mo . (I / Vj) turn-over number QA
Phi_Po = (I - Fo) / Fm (or Fv / Fm)
Phi_o = I - Vj
Phi_Eo = (I - Fo / Fm) .Phi_o
Phi_Do = 1 - Phi_Po - (Fo / Fm)
Phi_Pav = Phi_Po - (Sm / tFM); tFM = time to reach Fm (in ms)
ABS / RC = Mo . (I / Vj) . (I / Phi_Po)
TRo / RC = Mo . (I / Vj)
ETo / RC = Mo .(I / Vj) . Phi_o)
DIo / RC = (ABS / RC) - (TRo / RC)