北京易科泰生态技术有限公号/div>
首页 > 产品中心 > 植物生理生态仪 > LCpro T全自动便携式光合?/div>
产品详情
LCpro T全自动便携式光合?/div>
LCpro T全自动便携式光合仪的图片
参考报价:
面议
品牌9/dt>
关注度:
415
样本9/dt>
暂无
型号9/dt>
产地9/dt>
英国
信息完整度:
典型用户9/dt>
暂无
认证信息
高级会员 2平/div> 称: 北京易科泰生态技术有限公号/b>
证:工商信息已核宝br /> 访问量:280665
手机网站
扫一扫,手机访问更轻杽/div>
产品分类

AquaPen-C手持式叶绿素荧光测量仪(试管式)EasyChem 200全自动离子分析仪uMAC SMART便携式水质分析仪FL3500水下原位叶绿素荧光仪水体富营养化在线监测预报系统SEBA地下水取样器SEBA MPS-Checker便携式水质测量仪HOBO一氧化碳分析仪AZMGI便携式多种气体检测仪二氧化碳、温度检测仪7000 seriesSpectroSense2冠层光谱测量系统

VS3100系统Cardy Twin电导率计2265FS便携式盐分计2225FS便携式盐分计XRF Scanner样芯元素扫描分析系统智能LED光源人工气候箱Univac便携式昆虫抽吸采样器

Thermoline L+M植物生长室TPGThermoline L+M温湿度控制箱TRH

CoreScanner芯体密度X-光扫描成像与元素分析系统FireFly LIBS元素分析系统DragonFly LIBS元素分析系统

酶检测试剂工具包

MULTIPLEX RESEARCH便携式紫?可见光荧光仪浮游植物荧光测量系统

WinSCANOPY植物冠层分析系统

SEDIMAT 4-12土壤粒径分析系统

公司品牌
品牌传达企业理念
友情链接
产品简今/div>

前言

LCpro-T便携式光合仪为新一代智能型便携式光合作用测定仪,用以测量植物叶片的光合速率、蒸腾速率、气孔导度等与植物光合作用相关的参数。仪?/span>应用时间差分IRGA(红外气体分析)CO2分析模块咋/span>双激光调谐快速响应水蒸气传感?/span>精密测量叶片表面CO2浓度及水分的变化情况来考察叶片与植物光合作用相关的参数。通过人工光源?/span>CO2控制单元和温度控制单元可以同时精确调控环境条件,从而测定光强?/span>CO2浓度和温度对植物光合系统的影响。本仪器可在高湿度、多尘等恶劣环境中使用,具有广泛的适用性、/span>

上图左为全套光合仪主机配件及便携箱等,上图中为光合仪主机和手柄,上图右为操作人员进行野外实验

应用领域

l植物光合生理研究

l植物抗胁迫研穵/span>

l碳源碳汇研究

l植物对全球气候变化的相应及其机理

l作物新品种筛逈/span>

技术特炸/span>

l配备手持式叶绿素荧光仪,内置了所有通用叶绿素荧光分析实验程序,包括两套荧光淬灭分析程序?/span>3套光响应曲线程序?/span>OJIP-test筈/span>

l彩色LCD触摸屏,屏幕和控制单元均采用膜封技术,可在高湿和多尘环境下使用

l白光咋/span>RGB'/span>Red Gree Blue)光源任选其一

l内置GPS模块,精确获取经纬度及海拔数?/span>

l完全自动、独立控制环境参数(空气湿度+/span>CO2浓度,温度,光照强度(/span>

l精确测量CO2和水汽数?/span>

l便携式设计,体积轻小,仅里/span>4.1Kg

l人体工程学设计,舒适型肩带,携带操作简侾/span>

l手柄内置微型IRGA,有效缩?/span>CO2测量时间

l可在恶劣环境下操作,坚固耐用

l可方便互换不同种类的叶室、叶夸/span>

l叶室材料精心选择,确俜/span>CO2及水刅/span>测量精度

l数据存储量大,使用即插即拓/span>SD占/span>

l维护方便,叶室所有区域都很容易清?/span>

l采用低能耗技术,野外单电池持续工作时间长,可辽/span>16小时

l实时图形显示功能

上图为英国剑桥大学植物科学系M. Davey博士在南极洲对藻类光合作用研究时的工作图片,囟/span>LC系列光合仪轻便小巧,坚固耐用,续航持久等特点被列?*、/span>

技术指栆/span>

l测量参数:光合速率、蒸腾速率、胞闳/span>CO2浓度、气孔导度、叶片温度、叶室温度、光合有效辐射、气压?/span>GPS数据等,可进行光响应曲线咋/span>CO2响应曲线测量、/span>

l手持叶绿素荧先/span>仪(选配(/span>

1.测量参数包括F0?/span>Ft?/span>Fm?/span>Fm’?/span>QY_Ln?/span>QY_Dn?/span>NPQ?/span>Qp?/span>Rfd?/span>RAR?/span>Area?/span>M0?/span>Sm?/span>PI?/span>ABS/RC筈/span>50多个叶绿素荧光参数,叉/span>3种给光程序的光响应曲线?/span>2种荧光淬灭曲线?/span>OJIP曲线筈/span>

2.高时间分辨率,可辽/span>10万次每秒,自动绘凹/span>OJIP曲线并给凹/span>26?/span>OJIP-test测量参数包括F0?/span>Fj?/span>Fi?/span>Fm?/span>Fv?/span>Vj?/span>Vi?/span>Fm/F0?/span>Fv/F0?/span>Fv/Fm?/span>M0?/span>Area?/span>Fix Area?/span>Sm?/span>Ss?/span>N?/span>Phi_P0?/span>Psi_0?/span>Phi_E0?/span>Phi-D0?/span>Phi_Pav?/span>PI_Abs?/span>ABS/RC?/span>TR0/RC?/span>ET0/RC?/span>DI0/RC筈/span>

lCO2测量范围9/span>0-3000ppm

lCO2测量分辨率:1ppm

lCO2采用红外分析,差分开路测量系统,自动置零,自动气压和温度补偿

lH2O测量范围9/span>0-75 mbar

lH2O测量分辨率:0.1mbar

lPAR测量范围9/span>0-3000mol m-2s-1,余弦校止/span>

l叶室温度9/span>-5 - 50 精度?#177;0.2ℂ/span>

l叶片温度9/span>-5 - 50

l空气泵流速:100 - 500ml / min

lCO2控制:由内部CO2供应系统提供?*辽/span>2000ppm

lH2O控制:可高于或低于环境条仵/span>

l温度控制:由微型peltier元件控制,环境温?/span>-10℃到+15℃,所有叶室自动调芁/span>

lPAR控制9/span>RGB光源**2400mol m-2s-1+/span>LED白色光源**2500mol m-2s-1

l可选配多种带有光源的可控温叶室、叶夸/span>

1.宽叶叶室:长宽为2.52.5cm,适用于阔叶及大多数叶片类垊/span>

2.窄叶叶室:长宽为5.81cm,适用宽度小于1cm的条形叶

3.针叶叶室:长?/span>69mm,直徃/span>47mm,适用于簇状针叶(白光光源(/span>

4.小型叶叶室:叶室直径丹/span>16.5mm,测量面?/span>2.16cm2

5.土壤呼吸/小型植物宣/span>:测量测量土壤呼吸,或者高度低亍/span>55mm的整株草本植物光合作用,底面直径丹/span>11cm

6.多功能测量室:长?#215;高为15157cm,分为上下两部分,上部测量小型植物光合作用,下部分测量土壤呼吷/span>

7.果实测量室:上下两部分组成,上部透明,下部为金属,可测量果实**直径丹/span>11cm?*高度丹/span>10.5cm

8.冠层测量室:底面直径12.7cm,高12.2cm,适用于地表冠屁/span>

9.荧光仪联用适配器:适用于连接多种叶绿素荧光?/span>

上图从左到右依次为宽叶室、窄叶室?/span>LED光源、荧光仪联用叶室、小型叶宣/span>

上图从左到右依次为针叶室、果实测量室、土壤呼吸室、多功能测量室、冠层室

l显示:彩艱/span>WQVGALCD触摸屏,80 x 272像素,尺寷/span>95 x 53.9 mm,对角线镾/span>109mm

l数据存储9/span>SD卡,**兼容32G容量

l数据输出9/span>Mini-B垊/span>USB接口+/span>RS232九针D型接口,**230400波特玆/span>PC通讯

l供电系统:内?/span>12V 7.5AH锂离子电池,可持续工作至16小时,智能充电器

l尺寸:主朹/span>230110170mm,测量手柃/span>3008075mm

l重量:主朹/span>4.1Kg,测量手柃/span>0.8Kg

l操作环境9/span>5?/span>45ℂ/span>

典型应用一

Glyphosate reduces shoot concentrations of mineral nutrients in glyphosate-resistant soybeansZobioleL. et al. 2010Plant and Soil 328(1): 57-69

本研究对不同类型的抗草甘膦大豆进行草甘膦处理,发现大豆的各项光合参数,包括叶绿素含量、气孔导度、光合速率和蒸腾速率都有所降低、/span>

典型应用事/span>

Methanol as a signal triggering isoprenoid emissions and photosynthetic performance inQuercus ilexSecoR. et al. 2011Acta Physiologiae Plantarum 33(6):2413-2422

上图左为本研究设计的气室装置,用以研究常青栎'/span>Quercus ilex)在剪去部分叶片(模拟啃食)和加入甲醇(模拟附近其他植物被啃食时释放的信号)时的生理变化,上图右表明两种处理都提高了植物的净光合速率、/span>

产地

英国

选配技术方桇/span>

1)与叶绿素荧光仪组成光合作用与叶绿素荧光测量系绞/span>

2)不/span>FluorCam联用组成光合作用与叶绿素荧光成像测量系统

3)可选配高光谱成像实现从单叶片到复合冠层的光合作用时空变化研穵/span>

4)可选配O2测量单元

5)可选配红外热成像单元以分析气孔导度动?/span>

6)可选配PSI智能LED光源

7)可选配FluorPen?/span>SpectraPen?/span>PlantPen等手持式植物(叶片)测量仪器,全面分析植物叶片生理生?/span>

8)可选配ECODRONE?无人机平台搭载高光谱和红外热成像传感器进行时空格局调查研究

参考文献(仅列出部分代表性文献)

1.Al Kharusi L. Assaha D.V.M Al-Yahyai R. and Yaish W.M. (2017). Screening of Date Palm (PhoenixdactyliferaL.) Cultivars for Salinity Tolerance. Forests 2017? 136;doi:10.3390/f8040136.

2.Alsanius B.W. Bergstrand K-J. Hartmann R. Gharaie S. Wohanka W. Dorais M. Rosberg A.K.(2017). Ornamental flowers in new light: Artificial lighting shapes the microbial phyllospherecommunity structure of greenhouse grown sunflowers (Helianthus annuus L.) ScientiaHorticulturae Volume 216 Pages 234‒/span>247.

3.Alvarado-Sanabria,O. Garcs-Varn G. and Restrepo-Daz H. (2017). Physiological Response of Rice Seedlings (Oryza sativa L.) Subjected to Different Periods of Two Night Temperatures. Journal of Stress Physiology & Biochemistry Vol. 13 No. 1 2017 pp. 35-43.ISSN 1997-0838.

4.Barros R.E. Fari R.M. Tuffi Santos L.D. Azevedo A.M. Governici J.L. (2017). Physiological Response of Maize and Weeds in Coexistence. Plants Daninha 2017; v35: e017158134.

6.Borja D. Gonzalez-Gonzalez Nerea Oliveira Isabel Gonzalez Isabel Canellas Hortensia Sixto (2017).Poplar biomass production in short rotation under irrigation: A case study in theMediterranean. Biomass and Bioenergy 107 Dec 2017 198-206.

7.WF Dutra YL Guerra JPC Ramos PD Fernandes 2018. Introgression of wild alleles into the tetraploid peanut crop to improve water use efficiency earliness and yield (2018)- journals.plos.org

8.Can Bradyrhizobium strains inoculation reduce water deficit effects on peanuts? (2018).DD Barbosa SL Brito PD Fernandes World Journal of“/span> 2018?C Springer

9.EG de Sousa TI da Silva TJ Dias DV Ribeiro (2018). Biological Fertilization as an Attenuation of Salinity Water on Beetroot (Beta vulgaris) (2018)- Journal of Agricultural 2018ccsenet.org

10.TC Alves JPAR da Cunha EM Lemes (2018). Physiological changes in sugarcane in function of air and ground application of fungicide for orange rust control. 2018- Bioscience Journalseer.ufu.br

11.FRM Abreu B Dedicova RP Vianello AC Lanna (2018). Overexpression of a phospholipase (OsPLD|?1) for drought tolerance in upland rice (Oryza sativa L.) (2018) Protoplasma 2018?C Springer

12.B Correia RD Hancock J Amaral (2018).Combined drought and heat activates protective responses in Eucalyptus globulus that are not activated when subjected to drought or heat stress alone(2018) Frontiers in plant“/span> 2018frontiersin.org

13.C Ma H Hu L Jia C Zhang F Li (2018).Effects of Brackish Water Salinity on the Soil Salt and Water Movements and the Cotton Seedling Growth Under Film Hole Irrigation. 2018 Sustainable Development of Water“/span>?C Springer

14.P Zou X Lu C Jing Y Yuan Y Lu C Zhang (2018). Low-Molecular-Weightt Polysaccharides From Pyropia yezoensis Enhance Tolerance of Wheat Seedlings (Triticum aestivum L.) to Salt Stress (2018 Frontiers in plant“/span> 2018frontiersin.org

15.MEB Brito LAA Soares WS Soares Filho (2018). Emergence and morphophysiology of Sunki mandarin and other citrus genotypes seedlings under saline stress (2018)- Spanish Journal 2018revistas.inia.es

16.LAA Soares PD Fernandes GS Lima (2018).Gas exchanges and production of coloured cotton irrigated with saline water at different phenological stages (2018)- Revista Ci??ncia“/span> 2018SciELO Brasil

17.X Zhang Y Fan Y Jia N Cui L Zhao (2018).Effect of water deficit on photosynthetic characteristics yield and water use efficiency in Shiranui citrus under drip irrigation (2018- Transactions of the 2018ingentaconnect.com

18.JES Ribeiro AJS Barbosa SF Lopes (2018). Seasonal variation in gas exchange by plants of Erythroxylum simonis Plowman (2018)- Acta Botanica“/span> 2018SciELO Brasil

19.TB de Oliveira L de Azevedo Peixoto PE Teodoro (2018). The number of measurements needed to obtain high reliability for traits related to enzymatic activities and photosynthetic compounds in soybean plants (2018)- PloS one 2018journals.plos.org

20.A Muthalagu SJ Ankegowda MF Peeran (2018).Effect of Natural Growth Enhancer on Growth Physiological and Biochemical Attributes in Black Pepper (Piper nigrum L.) (2018)- researchgate.net

21.W Zhang XX Chen YM Liu DY Liu YF Du (2018). The role of phosphorus supply in maximizing the leaf area photosynthetic rate coordinated to grain yield of summer maize (2018)- Field Crops“/span> 2018?C Elsevier

  • 推荐产品
  • 供应产品
  • 产品分类