证:工商信息已核宝br /> 访问量:280543
LCi-T便携式光合仪?小巧、轻便的便携式光合作用测定仪,用以测量植物叶片的光合速率、蒸腾速率、气孔导度等与植物光合作用相关的参数。仪?/span>应用IRGA(红外气体分析)原理+/span>精密测量叶片表面CO2浓度及水分的变化情况来考察叶片与植物光合作用相关的参数、/span>特殊的设计可在高湿度、高尘埃环境使用。既可在研究中使用,又是很好的教学仪器、/span>
上图左为全套光合仪主机配件及便携箱等,上图中为光合仪主机和手柄,上图右为操作人员进行野外实验
l植物光合生理研究
l植物抗胁迫研穵/span>
l碳源碳汇研究
l植物对全球气候变化的相应及其机理
l作物新品种筛逈/span>
l配备手持式叶绿素荧光仪,内置了所有通用叶绿素荧光分析实验程序,包括两套荧光淬灭分析程序?/span>3套光响应曲线程序?/span>OJIP-test筈/span>
l彩色触摸屏,根据环境光线自动调整亮度,既方便野外查看数据,又延长续航时间
l任逈/span>RGB'/span>Red Green Blue)或白色光源之一作为标配
l便携式设计,体积轻巧,仅里/span>2.4Kg
l微型IRGA置于测量手柄中,大大缩短CO2测量的反应时闳/span>
l可在恶劣环境下使?/span>
l可方便互换不同种类的叶室
l叶室材料经精心选择,以确保CO2及水刅/span>的测量精?/span>
l数据存储量大,采用即插即拓/span>SD占/span>
l操作简单,维护方便,叶室所有区域都很容易清?/span>
l采用低能耗技术,野外单电池持续工作时间可辽/span>10小时
l内置GPS
上图为英国剑桥大学植物科学系M. Davey博士在南极洲对藻类光合作用研究时的工作图片,囟/span>LC系列光合仪轻便小巧,坚固耐用,续航持久等特点被列?*、/span>
l测量参数:光合速率、蒸腾速率、胞闳/span>CO2浓度、气孔导度、叶片温度、叶室温度、光合有效辐射、气压、光响应曲线筈/span>
l手持叶绿素荧先/span>仪(选配(/span>
1.测量参数包括F0?/span>Ft?/span>Fm?/span>Fm’?/span>QY_Ln?/span>QY_Dn?/span>NPQ?/span>Qp?/span>Rfd?/span>RAR?/span>Area?/span>M0?/span>Sm?/span>PI?/span>ABS/RC筈/span>50多个叶绿素荧光参数,叉/span>3种给光程序的光响应曲线?/span>2种荧光淬灭曲线?/span>OJIP曲线筈/span>
2.高时间分辨率,可辽/span>10万次每秒,自动绘凹/span>OJIP曲线并给凹/span>26?/span>OJIP-test测量参数包括F0?/span>Fj?/span>Fi?/span>Fm?/span>Fv?/span>Vj?/span>Vi?/span>Fm/F0?/span>Fv/F0?/span>Fv/Fm?/span>M0?/span>Area?/span>Fix Area?/span>Sm?/span>Ss?/span>N?/span>Phi_P0?/span>Psi_0?/span>Phi_E0?/span>Phi-D0?/span>Phi_Pav?/span>PI_Abs?/span>ABS/RC?/span>TR0/RC?/span>ET0/RC?/span>DI0/RC筈/span>
lCO2测量范围9/span>0-2000ppm
lCO2测量分辨率:1ppm
lCO2采用红外分析系统,差分开路测量系统,自动置零,自动气压和温度补偿
lH2O测量范围9/span>0-75 mbar
lH2O测量分辨率:0.1mbar
lH2O测量采用双激光调谐快速响应水蒸气传感?/span>
lPAR测量范围9/span>0-3000mol m-2s-1
l叶室温度9/span>-5 - 50 精度?#177;0.2ℂ/span>
l叶片温度9/span>-5 - 50
l叶室中空气流量:68‒/span>340ml / min
l空气流量精度:全量程皃/span>2%
l预热时间9/span>20℃时5分钟
l数据存储9/span>SD卡,**支持32GB扩展,可存储16?00?00组典型数?/span>
l数据接口9/span>mini-USB接口+/span>RS232标准接口
l图形显示:彩色WQVGA LCD触摸屏,480 x 272像素,尺?5 x 53.9 mm,对角线 109mm,可实时图形显示各测量参?/span>
l可选配便携式光源:具有PLU控制单元,控光范図/span>0-2400mol m-2s-1
l可选配叶室
1. 宽叶叶室:长宽为2.52.5cm,适用于阔叶及大多数叶片类垊/span>
2. 窄叶叶室:长宽为5.81cm,适用宽度小于1cm的条形叶
3. 针叶叶室:长?9mm,直?7mm,适用于簇状针叶(白光光源(/span>
4. 小型叶叶室:叶室直径?6.5mm,测量面?.16cm2
5. 土壤呼吸/小型植物室:测量测量土壤呼吸,或者高度低?5mm的整株草本植物光合作用,底面直径?1cm
6. 多功能测量室:长?#215;高为15157cm,分为上下两部分,上部测量小型植物光合作用,下部分测量土壤呼吷/span>
7. 果实测量室:上下两部分组成,上部透明,下部为金属,可测量果实**直径?1cm?*高度?1.5cm
8. 冠层测量室:底面直径12.7cm,高12.2cm,适用于地表冠屁/span>
9. 荧光仪联用适配器:适用于连接多种叶绿素荧光?/span>
上图从左到右依次为宽叶室、窄叶室?/span>LED光源、荧光仪联用叶室、小型叶宣/span>
上图从左到右依次为针叶室、果实测量室、土壤呼吸室、多功能测量室、冠层室
l供电系统:内?/span>12V 2.8AH铅酸电池,可持续工作10小时左右
l操作环境9/span>5?/span>45ℂ/span>
l主机尺寸9/span>240125140mm+/span>2.4Kg
l主机显示参数:环墂/span>CO2和水蒸汽:/span>CO2和水蒸汽变化;叶室和叶片的温度;气流速率;大气压;光合有效辐射;光合速率;胞闳/span>CO2浓度;蒸腾速率;气孔导度;电池状态等
Leaf life span optimizes annual biomass production rather than plant photosynthetic capacity in an evergreen shrub+/span>MartyC. et al. 2010New Phytologist 187(2):407-416
本文研究亅/span>Rhododendron ferrugineum(高山玫瑰杜鹃,杜鹃属模式种)净光合能力与叶片寿命的关系,发现有更多较老叶片的种群其光合能力更强(图中深色区域为一年叶片和二年叶片)、/span>
英国
1)与叶绿素荧光仪组成光合作用与叶绿素荧光测量系绞/span>
2)不/span>FluorCam联用组成光合作用与叶绿素荧光成像测量系统
3)可选配高光谱成像实现从单叶片到复合冠层的光合作用时空变化研穵/span>
4)可选配O2测量单元
5)可选配红外热成像单元以分析气孔导度动?/span>
6)可选配PSI智能LED光源
7)可选配FluorPen?/span>SpectraPen?/span>PlantPen等手持式植物(叶片)测量仪器,全面分析植物叶片生理生?/span>
8)可选配ECODRONE?无人机平台搭载高光谱和红外热成像传感器进行时空格局调查研究
2.Elansary H.O. Acta Physiol Plant (2017). Green roof Petunia Ageratum and Mentha responses to water stress seaweeds and trinexapac-ethyl treatments J Acta Physiologiae Plantarum 39?39: 145. doi:10.1007/s11738-017-2444-3.
3.Lee T.Y. et al. (2017). Physiological responses of Populus sibirica to different irrigation regimes for reforestation in arid area. South African Journal of Botany Volume 112 September 2017 Pages 329-335 ISSN0254-6299.
4.Magalhaes ID Lyra GB Souza JL Teodora I Cavalcante CA Ferreira RA and Souza RC (2017). Physiology and Grain Yield of Common Beans under Evapotranspirated Water Reposition Levels. Irrigat Drainage Sys Eng 2017 6:1 DOI: 10.4172/2168-9768.1000183.
6.Munjonji L. Ayisi K.K. Vandewalle B. Haesaert G. Boeckx P. Haesaert G. (2017).Yield Performance Carbon Assimilation and Spectral Response of Triticale to Water Stress. Experimental Agriculture Vol.52 Issue 1.
7.Munjonji L. Ayisi K.K. Vandewalle B. Haesaert G. Boeckx P. (2017). Carbon Isotope Discrimination as a Surrogate of Grain Yield in Drought Stressed Triticale. In: Leal Filho
8.Pourghayoumia M. Bakhshi D. Rahemi M. Kamgar-Haghighic A.A. Aalamid A. (2017). The physiological responses of various pomegranate cultivars to drought stress and recovery in order to screen for drought toleranceScientia Horticulturae. Volume 217 15 March 2017 Pages 164-172.
9.Sakhonwasse S. Tummachai K. Nimnoy N. (2017).Influences of LED Light Intensity on Stomatal Behavior of Three Petunia Cultivars Grown in a Semi-closed SystemEnvironmental Control Biology 55 (2) 93-103.
12.Ouledali A. Ennajh M. Ferrandino A. Khemira H. Schubert A. Secchi F. (2018). Influence of arbuscular mycorrhizal fungi inoculation on the control of stomata functioning by abscisic acid (ABA) in drought-stressed olive plantsSouth African Journal of Botany Vol. 121 March 2019 152-158.
13.Tahjib-Ul-Arif M. Siddiqui M.N. Sohag A.A.M. et al. J Plant Growth Regul (2018). Salicylic Acid-Mediated Enhancement of Photosynthesis Attributes and Antioxidant Capacity. Contributes to Yield Improvement of Maize Plants Under Salt Stress“/span>.
14.Qiu K. Xie Y. Xu D. et al. Braz. J. Bot (2018). Photosynthesis-related properties are affected by desertification reversal and associated with soil N and P availability“/span>.
15.W. Belay S. Kalangu J. Menas W. Munishi P. Musiyiwa K.. Climate Change Adaptation in Africa. Climate Change Management. Springer Cham.
16.Mujahid Ali1 Choudhary Muhammad Ayyub Muhammad Amjad and Riaz Ahmad. (2019).Evaluation of thermo-tolerance potential in cucumber genotypes under heat stress.Pak. J. Agri. Sci. Vol. 56(1) 53-61; 2019 DOI: 10.21162/PAKJAS/19.7519